Table 3. Planarity of pyridine rings

A plane was constructed by least-squares fitting of coordinates for $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5$ and C6. $\boldsymbol{\theta}_{1}$ is the angle between this plane and a vector from the C3/C5 midpoint to C4. θ_{2} is the angle between the plane and a vector from the $\mathrm{Cl} / \mathrm{C} 6$ midpoint to N1. θ_{av} is, as defined by Triggle et al. (1980), the average of torsion angles C2-C3-C4 -C 5 and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$. T and F refer to compounds in Triggle et al. (1980) and Fossheim et al. (1982), respectively.

Compound	$\boldsymbol{\theta}_{1}\left({ }^{\circ}\right)$	$\boldsymbol{\theta}_{2}\left({ }^{\circ}\right)$	$\mathrm{IC}_{50}(\mathrm{n} M)^{*}$	$\boldsymbol{\theta}_{\mathrm{av}}\left({ }^{\circ}\right)$
Nimodipine	19.55	10.75	0.8	22.95
F-II	20.72	12.32	4	24.33
T-I	14.56	5.31	4.4	17.03
T-III	15.55	9.80	5.1	19.98
T-IV	25.90	15.17	35	30.16
F-VI	21.74	12.43	110	25.58
F-I	24.70	13.91	200	28.49
F-III	20.28	10.16	3200	23.72
T-II	23.92	14.56	50000	28.06

${ }^{*} \mathrm{IC}_{50}$ is for the tonic methylfurmethide response in guinea pig ileal longitudinal smooth muscle (Triggle \& Janis, 1984) except for T-III, which is for CD in the same system (Triggle et al., 1980). The IC_{50} for either agonist is the same for T-III.
ment of structure/activity relationships. What is required is a comparison of the crystal structure of nimodipine with its structure in a membrane bilayer. The latter might be obtained by carrying out neutron scattering experiments with a series of selectively deuterated analogs of the parent compound.

SDW is supported by a grant from the Whitaker Foundation and by the Department of Radiology at the Univeristy of Connecticut Health Center. LGH is an established investigator of the American Heart Association. DGR is supported by the Defence

Advanced Research Projects Agency. DGR and SDW were also supported by the University of Connecticut Health Center Research Advisory Committee. Structure work was performed in the Biomolecular Structure Analysis Center at the University of Connecticut Health Center. Support for this center comes, in part, from the State of Connecticut Department of Higher Education - High Technology Project and Grant Program, grant HL-33026 from the National Institutes of Health, and gifts from the Patterson Trust Foundation and RJR Nabisco, Inc.

References

Bolger, G., Gengo, P., Klockowski, R., Luchowski, E., Siegel, H., Janis, R., Triggle, A. M. \& Triggle, D. J. (1983). J. Pharmacol. Exp. Ther. 225, 291-309.

Fossheim, R., Svarteng, K., Mostad, A., Rommilng, C., Schefter, E. \& Triggle, D. J. (1982). J. Med. Chem. 25, 126-131.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kokubun, S. \& Reuter, H. (1984). Proc. Natl Acad. Sci. USA, 81, 4824-4827.
Langs, D. A. \& Triggle, D. J. (1985). Mol. Pharmacol. 27, 544-548.
Rhodes, D. G., Sarmiento, J. G. \& Herbette, L. G. (1985). Mol. Pharmacol. 27, 612-623.
Triggle, A. M., Shefter, E. \& Triggle, D. J. (1980). J. Med. Chem. 23, 1442-1445.
Triggle, D. J. \& Janis, R. A. (1984). Modern Methods in Pharmacology, pp. 1-28. New York: A. R. Liss.

Acta Cryst. (1989). C45, 1751-1753

Structure of \boldsymbol{N}-(2,2-Dinitro-1-methylethenyl)-2-bromo-1,1,2-trimethylpropanamine

By Robert T. Patterson, Joseph H. Boyer and Edwin D. Stevens
Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA

(Received 17 August 1988; accepted 15 February 1989)

Abstract

C}_{9} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{4}, \quad M_{r}=310 \cdot 1\), triclinic, $P \overline{1}$, $a=7.013$ (1),$\quad b=9.768$ (3), $\quad c=9.969$ (2) $\AA, \quad \alpha=$ 73.43 (2),$\quad \beta=76.79$ (2), $\quad \gamma=76.07$ (2) ${ }^{\circ}, \quad V=$ 625.8 (3) $\AA^{3}, \quad Z=2, \quad D_{x}=1.646 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)$ $=0.71073 \AA, \quad \mu=32.5 \mathrm{~cm}^{-1}, \quad F(000)=316, \quad T=$ $100(2) \mathrm{K}, R=0.040$ for 3038 unique observed reflections. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[2.00(3) \AA]$ is formed with an oxygen of one of the nitro groups resulting in a relatively planar conformation of the molecule. A long $\mathrm{C}-\mathrm{C}$ double bond and short adjacent $\mathrm{C}-\mathrm{N}$ bonds indicate delocalization of double-bond character in the

molecular plane. The second nitro group is twisted by $58.5(3)^{\circ}$ with respect to the molecular plane.

Introduction. Reaction of dibromodinitromethane with tetramethylethylene in acetonitrile yielded a complex mixture from which an unknown yellow solid was isolated as the major product (Boyer, Manimaran \& Patterson, 1989). Since no one structure could be unequivocally assigned using conventional spectroscopic methods, the identity of the unknown has been determined by X-ray structure analysis.

Experimental. Yellow rectangular prism, approximate dimensions $0.40 \times 0.20 \times 0.40 \mathrm{~mm}$ recrystallized from ethyl acetate. Enraf-Nonius CAD-4 diffractometer with graphite-crystal-monochromatized Mo $K \alpha$ radiation. All measurements were made at 100 (2) K with a locally modified Enraf-Nonius nitrogen-flow cooling system. Unit-cell dimensions and lack of systematic absences indicated either P1 or $P \overline{1}$ space group. Lattice constants determined by least-squares fit of 25 reflections with $50 \leq 2 \theta \leq 60^{\circ}$ measured on the diffractometer. Three-dimensional intensity data collected in $\omega: 2 \theta$ scan mode to $[(\sin \theta) / \lambda]_{\max }=0.63 \AA^{-1}$, total of 3678 independent reflections, 3038 observed with $I>3 \sigma,-8 \leq h \leq 8$, $-12 \leq k \leq 12,0 \leq l \leq 12$. Data corrected for Lorentz and polarization effects. Three standard reflections (512, 004 and 240) measured every 2 h during data collection showed no significant change in intensity. Empirical absorption correction based on ψ scans of the 285 and $\overline{2} \overline{6}$ reflections (transmission: max. 99.7, min. $89 \cdot 9 \%$). Structure solved by direct methods using the MULTAN11/82 series of programs (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). Initial E map in space group $P \overline{1}$ contained 17 peaks corresponding to all non- H atoms. All H -atom positions were located on a subsequent difference Fourier map. Full-matrix leastsquares refinement on F with weights $w=$ $4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.05 F_{o}^{2}\right)^{2}\right]^{-1}$, anisotropic thermal parameters for non-H atoms, and isotropic thermal parameters for H atoms gave final $R=0.040, w R=$ 0.051 and $S=1.60$ for 3038 observations and 218 variables. In the final least-squares cycle, $(\Delta / \sigma)_{\max }=$ 0.06 . Maximum and minimum peaks in difference Fourier map were 0.86 and -1.07 e \AA^{-3}, respectively, both located within $0.9 \AA$ of the Br -atom position. Scattering factors and anomalousscattering contributions from International Tables for X-ray Crystallography (1974). Enraf-Nonius SDP programs used (Frenz, 1978).

Discussion. Final fractional coordinates for the nonhydrogen atoms are given in Table 1.* The numbering system used for the molecule may be found in Fig. 1. Bond distances, angles and torsion angles are listed in Table 2. A plot of the unit-cell contents is given in Fig. 2.
The structure reveals that the title compound was formed from the starting materials with the incorporation of an acetonitrile solvent molecule. A

[^0]Table 1. Table of positional parameters and their estimated standard deviations

Fig. 1. ORTEP (Johnson, 1976) plot of the title compound showing the atomic numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Cell packing diagram.
formal double bond is located between $\mathrm{C}(1)$ and $\mathrm{C}(2)$, although the relatively long $\mathrm{C}(1)-\mathrm{C}(2)$ bond distance $[1.401(3) \AA]$ and short $\mathrm{C}(2)-\mathrm{N}(3)$ and $\mathrm{C}(1)-\mathrm{N}(1)$ distances $[1 \cdot 316$ (3) and $1 \cdot 389(3) \AA$ respectively] suggest considerable delocalization of the double bond. The $\mathrm{C}(1)-\mathrm{N}(1)$ bond distance may be compared to the $\mathrm{C}(1)-\mathrm{N}(2)$ bond distance of

Table 2. Table of bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

Numbers in parentheses are estimated standard deviations in the least significant digits.

$\mathrm{Br}-\mathrm{C} 5$	2.012 (2)	N3-C4	1.487 (2)
$\mathrm{Ol}-\mathrm{N} 1$	$1 \cdot 249$ (2)	$\mathrm{Cl}-\mathrm{C} 2$	1.401 (3)
$\mathrm{O} 2-\mathrm{N} 1$	$1 \cdot 242$ (2)	C2-C3	1.501 (3)
$\mathrm{O} 3-\mathrm{N} 2$	1.222 (3)	C4-C5	1.571 (3)
$\mathrm{O} 4-\mathrm{N} 2$	1.230 (3)	C4-C8	1.537 (3)
$\mathrm{Nl}-\mathrm{Cl}$	1.389 (3)	C4-C9	1.528 (3)
N2-Cl	1.457 (3)	C5-C6	1.513 (3)
N3-C2	1.316 (3)	C5-C7	1.525 (3)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	121.9 (2)	N3-C4-C5	$106 \cdot 7$ (2)
$\mathrm{Ol}-\mathrm{Nl}-\mathrm{Cl}$	118.4 (2)	N3-C4-C8	110.3 (2)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl}$	119.6 (2)	N3-C4-C9	109.9 (2)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{O} 4$	124.4 (2)	C5-C4-C8	107.9 (2)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{Cl}$	117.7 (2)	C5-C4-C9	$110 \cdot 7$ (2)
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{Cl}$	117.9 (2)	C8-C4-C9	111.2 (2)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$130 \cdot 3$ (2)	$\mathrm{Brl}-\mathrm{C} 5-\mathrm{C} 4$	108.4 (1)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$113 \cdot 1$ (2)	$\mathrm{Brl}-\mathrm{C} 5-\mathrm{C} 6$	$105 \cdot 1$ (2)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	126.5 (2)	$\mathrm{Brl}-\mathrm{C} 5-\mathrm{C} 7$	$105 \cdot 8$ (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	120.4 (2)	C4-C5-C6	112.7 (2)
N3--C2-Cl	$120 \cdot 5$ (2)	C4- $\mathrm{C} 5-\mathrm{C} 7$	113.1 (2)
N3-C2-C3	122.0 (2)	C6-C5-C7	$111 \cdot 1$ (2)
C1-C2-C3	117.6 (2)		
$\mathrm{Ol}-\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	171.3 (4)	$\mathrm{Ni}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 3$	4.0 (3)
$\mathrm{Ol}-\mathrm{N}-\mathrm{Cl}-\mathrm{C} 2$	-11.4 (4)	$\mathrm{Nl}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-176.3 (3)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	-10.7 (3)	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 3$	- 178.9 (3)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	166.6 (4)	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	0.8 (4)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{Cl}-\mathrm{N}$	-62.0 (3)	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	52.0 (2)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	120.6 (3)	N3-C4-C5-C6	167.9 (3)
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{Cl}-\mathrm{Nl}$	119.5 (4)	N3-C4--C5-C7	-65.0 (4)
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	-57.9 (4)	$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Brl}$	170.5 (2)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{Cl}$	-179.3 (3)	C8--C4-C5-C6	-73.6 (3)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	1.0 (3)	C8-C4-C5-C7	$53 \cdot 5$ (3)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	168.4 (2)	$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Brl}$	-67.5 (2)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 8$	51.4 (3)	C9-C4-C5-C6	48.4 (3)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 9$	$1-71.6$ (2)	C9-C4-C5-C7	$175 \cdot 5$ (3)

1.457 (3) \AA and to an average value of 1.462 (33) \AA for 2236 bond distances between $s p^{2}$-hybridized C atoms and nitro-group N atoms extracted from the

1986 release of the Cambridge Structural Database (Allen et al., 1979). Two structures containing the 1,1-dinitroethylene fragment have been solved recently (Gilardi, 1988), both also showing evidence of reduced double-bond character in the $\mathrm{C}-\mathrm{C}$ bonds.

The molecular structure contains an intramolecular hydrogen bond between $\mathrm{H}(16)$ and $\mathrm{O}(1)$ with an $\mathrm{H}(16) \cdots \mathrm{O}(1)$ distance of $2 \cdot 00(3) \AA$ and $\mathrm{N}(3)-$ $\mathrm{H}(16) \cdots \mathrm{O}(1)$ angle of $131 \cdot 9(9)^{\circ}$. As a result, the $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ nitro group is coplanar with an approximate plane defined by the backbone atoms, $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Boyer, J. H., Manimaran, T. \& Patterson, R. T. (1989). J. Chem. Soc. Perkin Trans. 1. In the press.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A RealTime System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press, The Netherlands.

Gilardi, R. D. (1988). Personal communication.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). multanit/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1989). C45, 1753-1758

Topochemical Studies. XI.* Structures of α-Acetylaminocinnamic Acid Dihydrate, its Photodimer and the Tetrahydrate of the Photodimer

By Tetsuyuki Iwamoto, Setsuo Kashino \dagger and Masao Haisa
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 23 January 1989; accepted 6 March 1989)

$=4, \quad D_{m}=1.32(1), \quad D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $0.89 \mathrm{~mm}^{-1}, F(000)=512, R=0.047$ for 1936 unique reflections; photodimer, $1, c$-3-diacetylamino- $t-2, c-4-$ diphenylcyclobutane-r-1,3-dicarboxylic acid tetrahydrate (ACD4), $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} .4 \mathrm{H}_{2} \mathrm{O}, M_{r}=482 \cdot 48$, monoclinic, $P 2_{1} / a, a=19.153$ (2), $b=6.0987$ (4), $c=$ $10 \cdot 2964$ (8) $\AA, \beta=106 \cdot 424$ (7) ${ }^{\circ}, V=1153.6$ (2) \AA^{3}, Z

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and bond distances and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51961 (42 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

